

Syllabus of Research Entrance Test (RET)

Subject: PHYSICS

PART - I: Elementary Research Methodology

I. Mathematical Methods

Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier and Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; poles, residues and evaluation of integrals.

II. Classical Mechanics

Central force motions. Two body Collisions - scattering in laboratory and Centre of mass frames. Rigid body dynamics-moment of inertia tensor. Non-inertial frames and pseudoforces. Principle of least action. Generalized coordinates. Constraints, Lagrangian and Hamiltonian formalism and equations of motion. Conservation laws and cyclic coordinates. Poisson brackets and canonical transformations. Periodic motion: small oscillations, normal modes. Special theory of relativity-Lorentz transformations, relativistic kinematics and mass-energy equivalence.

III. Electromagnetic Theory

Electrostatics: Gauss's law and its applications, Laplace and Poisson equations, boundary value problems. Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields.

IV. Quantum Mechanics

Wave-particle duality. Schrödinger equation (time-dependent and time-independent). Eigenvalue problems (particle in a box, harmonic oscillator, etc.). Tunneling through a barrier. Wavefunction in coordinate and momentum representations. Commutators and Heisenberg uncertainty principle. Dirac notation for state vectors. Motion in a central potential: orbital angular momentum, angular momentum algebra, spin, addition of angular momenta; Hydrogen atom. Stern-Gerlach experiment.

V. Thermodynamic and Statistical Physics

Laws of thermodynamics and their consequences. Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibria. First- and second-order phase transitions. Phase space, micro- and macro-states. Micro-canonical, canonical and grand-canonical ensembles and partition functions. Free energy and its connection with thermodynamic quantities. Classical and quantum statistics. Ideal Bose and Fermi gases. Blackbody radiation and Planck's distribution law.

VI. Electronics

Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and heterojunction devices), device structure, device characteristics, frequency dependence and applications, C.R.O. Opto-electronic devices (solar cells, photo-detectors, LEDs). Operational amplifiers and their applications.

PART - II: Physics

I. Mathematical Physics

Green's function. Partial differential equations (Laplace, wave and heat equations in two and three dimensions). Elements of computational techniques: root of functions, interpolation, extrapolation, integration by trapezoid and Simpson's rule, Solution of first order differential equation using Runge-Kutta method. Finite difference methods. Tensors. Symmetry operations and group theory.

II. Electromagnetic Theory

Dispersion relations in plasma. Lorentz invariance of Maxwell's equation. Transmission lines and wave guides. Radiation- from moving charges and dipoles and retarded potentials.

III. Quantum Mechanics

Time-independent perturbation theory and applications. Variational method. Time dependent perturbation theory and Fermi's golden rule, selection rules. Identical particles, Pauli exclusion principle, spin-statistics connection. Spin-orbit coupling, fine structure. WKB approximation. Elementary theory of scattering: phase shifts, partial waves, Born approximation. Relativistic quantum mechanics: Klein-Gordon and Dirac equations. Semi-classical theory of radiation.

IV. Electronics

Digital Electronics: Universal Gates, XOR gates, half and full adder, parallel adder, encoder and decoder, POS, SOP, K-map, Flip-Flops. Impedance matching, amplification (Op-amp based, instrumentation amp, feedback), High frequency devices (including generators and detectors).

V. Atomic & Molecular Physics

Quantum states of an electron in an atom. Electron spin. Spectra of one and two valance electron atoms. Relativistic corrections for energy levels of hydrogen atom, hyperfine structure and isotopic shift, width of spectrum lines, LS & JJ couplings. Zeeman, Paschen-Bach & Stark effects. Electron spin resonance. Nuclear magnetic resonance, chemical shift. Born-Oppenheimer approximation. Electronic, rotational, vibrational and Raman spectra of diatomic molecules, selection rules, Frank-Condon principle.

Lasers: spontaneous and stimulated emission, Einstein A & B coefficients. Optical pumping, population inversion, rate equation. Modes of resonators and coherence length. Simple laser systems.

VI. Condensed Matter Physics

Bravais lattices. Reciprocal lattice. Diffraction and the structure factor. Bonding of solids. Elastic properties, phonons, lattice specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and semiconductors. Superconductivity: type-I and type-II superconductors. Diamagnetism, paramagnetism, and ferromagnetism.

Superfluidity. Defects and dislocations. Ordered phases of matter: translational and orientational order, Liquid crystals and its types. Quasi crystals.

VII. Nuclear and Particle Physics

Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semi-empirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleon-nucleon potential, charge-independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of shell structure, single-particle shell model, its validity and limitations. Rotational spectra. Elementary ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions, reaction mechanism, compound nuclei and direct reactions.

Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann-Nishijima formula. Quark model, baryons and mesons. C, P, and T invariance. Application of symmetry arguments to particle reactions. Parity non-conservation in weak interaction. Relativistic kinematics.